

PROGRAMA DE ASIGNATURA										
I DATOS GENERALES										
Nombre de la Carrera o F	Prog	grama:	Inge	niería industria	ı					
Nombre de la Asignatura	: C	alor y	Termo	odinámica						
Departamento y/o cáted	ra:	Física								
Régimen: Semestral			Núm	Número de Unidades Crédito: 5						
Ubicación en el plan de e	estu	dios: (Quinto	o semestre						
Tipo de Obligatoria asignatura:	Х	Electi	va	N° horas semanales :	Teóricas	2	Prácticas/ Seminarios	2	Laboratorio	0
Prelaciones/Requisitos:			-	Asignaturas a	las que aport	ta:				
Cálculo III.				Térmica.						
Química II				Procesos Quí	micos Industi	rial	es			
Fecha de aprobación del	Pro	ograma	en el	Consejo de Fac	cultad: octubi	re 2	2015			

II.- JUSTIFICACIÓN

La unidad curricular **Calor y termodinámica** tiene como propósito que el estudiante se forme en los principios relacionados con la aplicación de las tres leyes de la termodinámica (energía, entropía y exergía), incorporando los conceptos de propiedades, sistemas y procesos termodinámicos basados en ejemplificación de casos reales.

III CONTRIBUCIÓN DE LA ASIGNATURA AL DESARROLLO DE LAS COMPETENCIAS				
Competencia General 1 (CG1): Aprender a aprender con calidad				
Unidad de Competencia 1 (CG1 – U1):	Criterios de desempeño de la U1:			
Abstrae, analiza y sintetiza información.	1. Descompone, identifica, clasifica y jerarquiza elementos comunes			
	2. Resume información de forma clara y ordenada			
	3. Integra los elementos de forma coherente			
Unidad de Competencia 2 (CG1 – U2):	Criterios de desempeño de la U2:			
Aplica los conocimientos en la práctica.	1. Selecciona la información que resulta relevante			
, , , , , , , , , , , , , , , , , , ,	para resolver una situación.			
Competencia General 2 (CG2): Aprender a trab	para resolver una situación.			
<u> </u>	para resolver una situación.			
Competencia General 2 (CG2): Aprender a trab	para resolver una situación. ajar con el otro			
Competencia General 2 (CG2): Aprender a trab Unidad de Competencia 1 (CG2 – U1):	para resolver una situación. pajar con el otro Criterios de desempeño de la U1:			

Unidad	d de Competencia 1	(CPB1 – U1):

Modela matemáticamente situaciones reales para apoyar la toma de decisiones.

Criterios de desempeño de la U1:

- **1.** Formula matemáticamente el modelo seleccionado.
- 2. Resuelve el modelo matemático.

UNIDADES	TEMAS			
1 . TEMA 1	1.1. Conceptos elementales de la Termodinámica.			
	1.2. Dimensiones y Unidades.			
	1.3. Temperatura y Ley Cero.			
2 . TEMA 2	2.1. Sistemas Cuasiestáticos.			
	2.2. Trabajo y proceso adiabático.			
	2.3. Primera Ley de la Termodinámica.			
	2.4. Conservación de la Energía en sistemas Cerrados. F			
	2.5. unciones de Estado y de línea.			
	2.6. Balance de Energía.			
3 . TEMA 3	3.1. Propiedades Físicas de las Sustancias Puras.			
	3.2. Diagrama tridimensional P-v-T. Diagrama P-v.			
	3.3. Gas Ideal.			
	3.4. Tablas de las propiedades de las sustancias puras (Líquido			
	comprimido y saturado, vapor saturado y sobrecalentado para el			
	agua).			
	3.5. Calidad de una mezcla líquido- vapor.			
4 . TEMA 4	4.1. Análisis de Energía mediante volúmenes de control.			
	4.2. Conservación de la masa para un volumen de control en estado			
	estacionario.			
	4.3. Conservación de la Energía para un volumen de control.			
	4.4. Ecuaciones de Energía			
5 . TEMA 5	5.1. Introducción a la Segunda Ley de la Termodinámica.			
	5.2. Entropía.			
	5.3. Flujo de Entropía.			
	5.4. Generación de Entropía.			
	5.5. Trabajo perdido.			
	5.6. Balance de Entropía.			
	5.7. Termodinámica de los procesos irreversibles			
	5.8. Eficiencias Adiabáticas			
6 . TEMA 6	6.1. Disponibilidad e Irreversibilidad.			
7 . TEMA 7	7.1. Procesos cíclicos: Ciclo de Carnot.			
	7.2. Ciclo Rankine simple y con sobrecalentamiento.			
	7.3. Consideraciones prácticas en máquinas térmicas.			
	7.4. Ciclo de Brayton			

	7.5. Ciclos combinados
8 . TEMA 8	8.1. Ciclos Estándares de aire
	8.2. Ciclo Otto.
	8.3. Ciclo Diesel
9 . TEMA 9	9.1. Refrigeración y Bomba de Calor.
	9.2. Ciclo de Carnot invertido.
	9.3. Refrigeración simple por compresión de vapor.

V.- ESTRATEGIAS DE ENSEÑANZA Y DE APRENDIZAJE

Estrategias de Enseñanza: exposición, discusión y trabajo en equipo Estrategias de Aprendizaje: de adquisición y de resolución de problemas

VI.- ESTRATEGIAS DE EVALUACIÓN

Evaluación escrita individual y por equipos

Evaluación formativa (Retroalimentación de los errores para promover el aprendizaje. El trabajo y la discusión en equipo genera el desarrollo del trabajo colaborativo).

VII.- REFERENCIAS BIBLIOGRÁFICAS

Textos:

- ✓ CENGEL, YUNUS. Termodinámica. Quinta edición. Mc Graw-Hill
- ✓ VAN WYLEN. Fundamentos de Termodinámica. Segunda Edición. Limusa-Wylen
- ✓ WARK, KENNETH. Termodinámica. Quinta Edición. Mc Graw-Hill

Página web:

Guías y material de apoyo:

- 1. Envíos durante el semestre de material actualizado.
- 2. Guías y material de apoyo publicadas en la plataforma virtual CANVAS Módulo 7 (https://m7.ucab.edu.ve/login).