

PROGRAMA DE ASIGNATURA					
I DATOS GENERALES					
Nombre de la Carrera o Proç	grama: Ingeniería Informática				
Nombre de la Asignatura: Arquitectura del Computador					
Departamento: Departamento de Telemática					
Régimen: Semestral		Número de Unidades Crédito: 8			
Ubicación en el plan de estudios: Sexto Semestre					
Requisitos: Circuitos Electrónicos		Asignaturas a las que aporta: Redes de Computadores I			
Tipo de asignatura:		Horas semanales:			
Obligatoria: X	Electiva:	Teoría: 4	Práctica: 0	Laboratorio: 2	
Vigente desde: Octubre 2015	;	<u>I</u>			

II.- JUSTIFICACIÓN

La unidad curricular Arquitectura del Computador contribuye a que el estudiante se familiarice con los distintos componentes electrónicos tanto de la electrónica analógica como la digital, para así poder entender de una manera básica el comportamiento de los distintos componentes electrónicos que puedan formar parte de un computador. El Ingeniero en Informática debe ser capaz no sólo de desarrollar y evaluar software, sino también es necesario que sea competente en el análisis y la evaluación de los requerimientos de hardware, aspecto clave en el desempeño exitoso de un Ingeniero en Informática.

III CONTRIBUCIÓN DE LA ASIGNATURA AL DESARROLLO DE LAS COMPETENCIAS Competencia General 1 (CG1): Aprender a aprender con calidad				
Unidad de Competencia 2 (CG1 - U2): Identifica, plantea y resuelve problemas	 Criterios de desempeño de la U2: Analiza el problema y obtiene la información requerida para solucionarlo Formula opciones de solución que responden a su conocimiento, reflexión y experiencia previa Selecciona la opción de solución que resulta más pertinente, programa las acciones y las ejecuta 			
Unidad de Competencia 3 (CG1 - U3): Trabaja con altos estándares de calidad	Criterios de desempeño de la U3: 1. Actúa conforme a las normas y exigencias que denotan la calidad de su actuación			
Competencia General 2 (CG2): Aprender	r a trabajar con el otro			
Unidad de Competencia 1 (CG2 - U1): Participa y trabaja en equipo	Criterios de desempeño de la U1: 1. Realiza las tareas establecidas por el equipo 2. Cumple diversos roles dentro del equipo			
Competencia Profesional Básica 1 (CPB1):	: Modela para la toma de decisiones			
Unidad de Competencia 1 (CPB1 - U1): Simula computacionalmente situaciones de la vida real	Criterios de desempeño de la U1: 1. Utiliza herramientas de software para la simulación de los datos recolectados 2. Realiza un diagnóstico en función de los resultados de la simulación para apoyar la toma de decisiones			
Competencia Profesional Específica 1 (CPI	E1): Desarrolla sistemas telemáticos			
Unidad de Competencia 1 (CPE1 - U1): Diseña y construye dispositivos electrónicos	Criterios de desempeño de la U1: 1. Utiliza herramientas de software para la simulación, diseño y construcción de circuitos electrónicos 2. Desarrolla algoritmos para sistemas microcontrolados de pequeña y mediana escala			

IV UNIDADES TEMÁTICAS		
UNIDADES	TEMAS	
1. Máquinas de estados finitos	Teoría 1.1. Diagramas de estado 1.2. Contadores sincrónicos 1.3. Secuencias de temporizado 1.4. Teoremas y definiciones 1.5. Máquinas de estados Moore y de Mealy 1.6. Minimización del número de estados Laboratorio 1.7. Construcción de un Contador Asíncrono y una máquina de estado finita síncrona	
2. Registros, Contadores y Unidad de Memoria	Teoría 2.1. Diodo ideal 2.2. Registros 2.3. Registros con corrimiento 2.4. Unidad de memoria Laboratorio 2.5. Construcción de un buffer y un registro	
3. Buses de Sistema	Teoría 3.1. Operación del transistor bipolar 3.2. Componentes del computador 3.3. Estructuras de interconexión 3.4. Jerarquía de Buses 3.5. Diagramas de tiempos 3.6. Elementos de diseño de un bus Laboratorio	
	3.7. Construcción de una arquitectura de bus de datos e intercambio de información entre registros	
4. Amplificadores Operacionales	Teoría 4.1. Amplificador operacional básico 4.2. Circuitos prácticos con amplificador operacional 4.3. Circuitos lineales con operacionales 4.4. Circuitos no-lineales con operacionales 4.5. Computación analógica	
	Laboratorio4.6. Diferentes configuraciones de los amplificadores operacionales. Aplicaciones de los operacionales como comparador	

IV UNIDADES TEMÁTICAS		
UNIDADES	TEMAS	
5. Unidad de memoria	Teoría 5.1. Memoria Interna 5.2. Memoria Principal y cache 5.3. Clasificación de memorias 5.4. Memoria Externa 5.5. Dispositivos de almacenamiento masivo	
	Laboratorio 5.6. Montaje de una memoria electrónica y prueba de ciclos de escritura y lectura	
6. Unidad Aritmético-lógica	Teoría 6.1. Unidad aritmético-lógica 6.2. Sumador básico y sumador completo 6.3. Complemento a dos 6.4. Representación entera y de punto flotante 6.5. Aritmética de punto flotante Laboratorio 6.6. Montaje de una unidad aritmético lógica de 4 bits. Prueba de operaciones	
7. Arquitectura y Funcionamiento de la CPU	Teoría 7.1. Introducción y clasificación 7.2. Arquitectura de Von Newman 7.3. Arquitectura Harvard 7.4. Organización de registros 7.5. Unidad de control 7.6. Micro-instrucciones 7.7. Segmentación de instrucciones 7.8. Medición del rendimiento de la CPU 7.9. Procesadores Superescalares Laboratorio 7.10. Utilización de software de simulación de procesadores	
8. Organización paralela	 8.1. La taxonomía de Flynn 8.2. Multiprocesamiento 8.3. Procesadores Paralelos 8.4. Computación Vectorial 8.5. Multicomputadores y Multiprocesadores 	

IV UNIDADES TEMÁTICAS		
UNIDADES	TEMAS	
9. Microcontroladores	Teoría 9.1. Convertidor analógico-digital 9.2. Diferencias entre microcontroladores y microprocesadores 9.3. Arquitectura interna del microcontrolador 9.4. Set de instrucciones y comandos 9.5. Aplicaciones en dispositivos de E/S en un computador 9.6. Utilización de software de simulación para microcontroladores	
	Laboratorio 9.7. Montaje y programación de los microcontroladores, prueba de las distintas instrucciones y recursos del microcontrolador. Proyecto con microcontroladores	

V.- ESTRATEGIAS DE ENSEÑANZA Y DE APRENDIZAJE

Clases magistrales (para ilustrar los contenidos se utilizan presentaciones), preguntas generadoras y preguntas guías, resolución de ejercicios y problemas y aprendizaje basado en problemas, videos y talleres

VI.- ESTRATEGIAS DE EVALUACIÓN

Observación, pruebas escritas, proyecto, simulación, pruebas de ejecución o desempeño y portafolio

VII.- REFERENCIAS BIBLIOGRÁFICAS

Textos:

- 1. Angulo, José. Microcontroladores PIC Diseño práctico de aplicaciones. McGraw-Hill.
- 2. Hennessy, J. Computer Architecture: A cuantitative approach. Morgan Kaufmman.
- 3. Morris, M. Computer System Architecture. Prentice Hall.
- 4. Stallings, W. Computer Organization and Architecture. Prentice Hall.
- 5. Tanenbaum, Andrew. Organización de computadoras un enfoque estructurado. Prentice Hall.
- 6. Tocci, Ronald. Sistemas Digitales. Prentice Hall.
- 7. Wakerly, John. Diseño Digital. Prentice Hall.

Guías y material de apoyo:

1. Guías y material de apoyo publicadas en la plataforma virtual CANVAS Módulo 7